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Vortex ‘ shedding ’ behind circular cylinders can be altered and suppressed altogether 
(or ‘controlled’) over a limited range of Reynolds numbers, by a proper placement 
of a second, much smaller, cylinder in the near wake of the main cylinder. This new 
and dramatic suppression of vortex ‘shedding’ is the subject of this paper. Details 
of the phenomenon are documented through parallel experimental and numerical 
investigations, including flow visualization. Temporal growth rate measurements of 
the velocity fluctuations reveal that the presence of the smaller cylinder reduces the 
growth rate of the disturbances leading to  vortex ‘shedding’, and that its 
suppression, accompanied by the disappearance of sharp spectral peaks, coincides 
with negative temporal growth rates. It is argued that the presence of the secondary 
cylinder has the effect of altering the local stability of the flow by smearing and 
diffusing concentrated vorticity in the shear layers behind the body ; a related effect 
is that the secondary cylinder diverts a small amount of fluid into the wake of the 
main cylinder. A unified explanation of the formation and suppression of the vortex 
street is attempted, and it is suggested that the vortex ‘shedding’ is associated with 
temporally unstable eigenmodes which are heavily weighted by the near field. It is 
also shown that absolute instability is relevant, up to a point, in explaining vortex 
shedding, whose suppression can similarly be associated with altering the instability 
in the near wake region from absolute to convective. 

1. Introduction 
The phenomenon of vortex ‘shedding’? behind bluff bodies is familiar since the 

days of Leonard0 da Vinci, and has been studied systematically a t  least since the 
days of Strouhal (1878). Many important contributions have been made, and a 
partial list includes Kdrman (1911), Kdrman & Rubach (1912), Page & Johansen 
(1927, 1928), Kovasznay (1949), Roshko (1954), Tritton (1959), Abernathy & 
Kronaur (1961), Serger (1964) and Gerrard (1966). Much information has been 
accumulated, but it is fair to say that the present understanding is far from complete. 

The basic observation on which we elaborate in this paper is the ease with which 
the nature of vortex shedding behind bluff bodies can be altered, at least a4 low 
Reynolds numbers. We report results from experiments primarily (but not 
exclusively) on flow behind circular cylinders, and emphasize a novel method of 
suppression of low-Reynolds-number vortex shedding. The experimental findings are 
substantiated by full-scale numerical simulation. We present these results not only 

f No specific physical process is implied by the use of the word ‘shedding ’ which, for convenience, 
will be used subsequently without the quotes. 
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because of their novelty but also because they add, as we hope to demonstrate, to our 
understanding of the physical processes associated with the occurrence of vortex 
shedding behind bluff bodies. 

The sensitivity of vortex shedding at low Reynolds numbers to small external 
perturbations has long been known. Kovasznay (1949) indicated that a hot-wire 
probe positioned with supports aligned parallel to the flow caused an upstream- 
propagating instability. Mair & Maull (1971) reported Berger’s remarks that the 
vortex shedding frequency over the entire span of the cylinder dropped when a hot 
wire was inserted in one of the shear layers, and that this effect depended on the 
overheat ratio of the hot wire. Berger has added in private conversation with us that 
this frequency, measured in one of the shear layers approximately 20 diameters 
downstream of the cylinder (0.5 mm diameter), was reduced (merely because of hot- 
wire insertion) by about 30 %. The Reynolds number Re, based on the oncoming free- 
stream velocity U, and the cylinder diameter D ,  was about 90. 

Cylinder vibrations and other streaming techniques are known to produce many 
interesting effects characteristic of a nonlinear self-excited oscillator (for a survey, 
see Mair & Maull 1971 ; Berger & Wille 1972 ; for a new perspective relating to the so- 
called ‘ universal ’ behaviour in this nonlinear system, see Olinger & Sreenivasan 
1988a, b ) .  Among these effects, special mention must be made of vortex suppression. 
Berger (1967) showed that the vortex shedding in the wake of a cylinder with an oval 
cross-section could be suppressed in a narrow Reynolds-number range (77 < Re < 80, 
Re here based on the cylinder width) by vibrating the cylinder a t  frequencies several 
times the vortex shedding frequency. Wehrmann (1967), also working with oval 
cylinders, noted a similar effect a t  Reynolds numbers between 40 and 80. 

Geometrical modifications further illustrating the sensitivity of the vortex 
shedding process include the influence of end plates (Stansby 1974 ; Nishioka & Sat0 
1974), flow non-uniformities (Gaster 1969, 1971 ; Gerich & Eckelmann 1982), use of 
splitter plates (Roshko 1955), base bleed (Bearman 1967), blockage effects (Shair 
et al. 1963), etc. 

At present, the reasons for this wake sensitivity are not fully understood. We 
intend to show that this is a manifestation of the fact that  global changes in the wake 
can be produced through only local modifications. After a brief description in $2 of 
experimental facilities, we outline this basic feature in $3  by showing that vortex 
formation a t  low Reynolds numbers can be completely suppressed by suitably 
placing in the wake of the vortex shedding cylinder a much smaller cylinder, to be 
called here the ‘ control ’ or secondary cylinder. These findings are substantiated in 
$4 by the numerical investigation of the wake with and without the secondary 
cylinder by solving the incompressible Navier-Stokes equations using a two- 
dimensional finite-difference Galerkin method. I n  Q 5, we briefly describe related 
suppression observations on other bluff bodies, and the effect of heating the control 
cylinder. We elucidate in $6 the suppression phenomenon by concentrating on the 
temporally unstable modes and their relevance to vorhex shedding ; further insight is 
obtained from power spectral measurements. Finally, in $7,  these observations are 
interpreted in terms of the alteration of the nature of instability that the secondary 
cylinder produces ; we especially discuss whether these features can be explained by 
the notion that the near wake of bluff bodies is governed by an absolute instability 
(Koch 1985; Huerre & Monkewitz 1985 ; Triantafyllou, Triantafyllou & 
Chryssostomidis 1986 ; Monkewitz & Nguyen 1987 ; Monkewitz 1988 : Hannemann 
& Oertel 1989). 
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A preliminary and partial account of the experimental aspects of this work 
appeared in Strykowski & Sreenivasan (1985~).  

2. Experimental facilities and instrumentation 
2.1. Wind tunnels 

Measurements were made in pressure-driven wind tunnels, supplied with compressed 
dry air from two large storage tanks (combined storage volume of approximately 
18 m3 a t  a storage pressure of 8x106N/m2),  thus eliminating sizeable discrete 
frequencies usually associated with blowers. One of the tunnels was a carefully 
designed, low-turbulence facility. The second tunnel was designed especially for 
measuring temporal growth and decay rates in the wake. A brief description of the 
facilities is provided below. 

2.1.1. Low-turbulence facility 
Air entered two settling chambers packed with damping material, downstream of 

which were two tandem contractions with several carefully placed screens in 
between ; see Strykowski (1986) for details. The settling chambers were acoustically 
lined with convoluted foam, and the upstream and downstream contractions had 
area ratios of 9: 1 and 6: 1 respectively. The whole arrangement produced, with the 
test-section empty, a turbulence level uf /Uo  < 0.03% over the range of velocities 
investigated ; uf here is the root-mean-square (r.m.s.) magnitude of the streamwise 
velocity whose mean is U,,. The r.m.8. turbulence levels were measured from hot-wire 
signals filtered from DC to 5 kHz and integrated over long time intervals (typically 
a minute). Downstream of the second contraction was a test chamber of circular 
cross-section. The test section was 5 cm in diameter and 10 cm long; its area was 
carefully diverged to produce constant velocity throughout. The flow velocity 
entering the test section downstream of the second contraction was uniform across 
the test section (outside the boundary layers) to within 1 YO. 

2.1.2. Tunnel designed to measure ampliJication and decay ratea 
A second wind tunnel was employed to measure the temporal growth and decay 

rates of wake oscillations (to be discussed in 96). The tunnel provided a steady mean 
flow but was designed with only a single contraction and could not be considered a 
‘low turbulence’ facility (u’/Uo - 0.15%). Upstream of the settling chamber were 
placed large needle and globe valves. The needle valve was used to adjust the speed, 
and the globe valve enabled the air flow to be rapidly established or quenched; this 
ability is critical for the transient experiments to be described in $6. To enhance the 
response of the system, relatively large pipes were used to connect the settling 
chamber to the two storage tanks. 

2.2. Flow quality 
Before detailed measurements were made, both wind tunnels were checked for flow 
non-uniformities which might result in a ‘ cell ’ structure as described by Gaster 
(1971) and Gerich & Eckelmann (1982). The low-turbulence-level tunnel produced, 
in the Reynolds-number range of 40 to 100, no cell structure over most of the 
cylinder. The single-contraction wind tunnel contained three cells due to small mean 
flow irregularities. The cells were approximately stationary at the flow speeds of 
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Facility D (cm) Did  LID HID 
Water channel 0.32 7 15 80 

Low-turbulence wind 0.08 3 60 60 
tunnel 0.08 7.5 60 60 

0.08 10.0 60 60 
0.08 15.0 60 60 
0.08 20.0 60 60 

Single-contraction 0.15 10.0 60 72 
wind tunnel 0.15 10.0 27 72 

0.15 10.0 14 72 
0.32 10.0 60 33 

TABLE 1. Data on the cylinders and flow facilities used in the experiments: D, the diameter of the 
main or vortex shedding cylinder; d, control cylinder diameter ; L, cylinder length between end 
plates, the span; H, height of the test section normal to the cylinder axis and the free stream 

interest, and therefore a ‘clean’ slice of the flow was selected with properly placed 
end plates designed after Stansby (1974). 

Well polished drill rods were used as cylinders and were fitted with end plates to 
provide better end conditions. Owing to  the relatively small dimensions of the 
cylinders, the end plates were anchored to the tunnel sidewalls and the cylinders 
passed through narrow openings machined into the end plates. The relevant data 
concerning the cylinders and flow facilities are presented in table 1, which also 
includes the dimensions of the secondary or ‘control ’ cylinder discussed below. 

2.3. Instrumentation 

Some of the results to follow were obtained with DANTEC constant-temperature 
hot-wire anemometers, type 55M01, using 5 pm wires etched to a working length of 
approximately 0.8 mm; overheat ratios of 1.75 were used. The resulting data were 
DC offset and filtered with a DANTEC signal conditioner, model 55D26, and 
amplified to optimize the 12-bit resolution ( +5 V) of the MASSCOMP MC-5000 series 
computer. All data processing was done on this machine. During the initial stages of 
the work, it was felt that  the hot-wire probe, when placed within a few diameters of 
the cylinder, might be intruding on some details of flow development (see Kovasznay 
1949; Mair & Maul1 1971 ; and below). Thus, all hot-wire measurements were made 
outside of this sensitive region. Within this region, velocity measurements were made 
with a TSI laser Doppler velocimeter (LDV) in the forward scatter mode. In 
instances where both LDV and hot wire were deemed reliable, both were used under 
identical circumstances as a check on each other. 

The power spectral data were Bartlett averaged over four record lengths of 16000 
points each providing a spectral resolution of Af = 0.24 Hz (compared with the 
vortex shedding frequency typically in the range of 200 Hz). Discrete peaks in the 
power spectra found below about 50 Hz have been investigated, and a detailed 
account of their source as well as their minor effects can be found in Strykowski 
(1986). It suffices here to say that they are of minor magnitude (see §6.4), and do not 
affect the development of the wake in any significant way. It is important to stress 
that the following observations were independent of which flow facility was used, and 
that the essential aspects have in fact been repeated in several laboratories elsewhere 
since the first observations made by us. 
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Flow visualization was performed in a water channel (Technovate model 9045) 
with a free surface ; the working depth of water was approximately 5 cm. Hydrogen 
bubbles generated from 0.05 mm steel wires, tensioned across the test section 
orthogonal to the cylinder, were used as flow markers. Short time exposure 
photographs of the flow field were taken with a Minolta SRT202 camera fitted with 
a macro lens and a Vivitar 283 flash. 

Mean velocity was obtained using a Pitot tube and an MKS-Baratron model 270B 
with a 10 Torr differential pressure head. 

3. The basic experimental observations 
3.1. The phenomenon 

A hydrogen-bubble visualization of the vortex shedding behind a circular cylinder is 
shown in figure 1 ; the flow Reynolds number is about 80. In the facility employed 
for flow visualization, the natural vortex shedding did not commence until a 
Reynolds number of about 60, this being higher than the usual value of about 46 (see 
Nishioka & Xato 1974; Mathis, Provansal & Boyer 1984; and Strykowski 1986) 
because the aspect ratio LID (L being the spanwise length of the cylinder) was low 
(about 15). 

Let us now introduce another more slender cylinder (hereafter called the secondary 
or ‘control’ cylinder) of diameter d behind and parallel to the main cylinder (see 
figure 2), roughly in one of the shear layers. For a Reynolds number of about 80 and 
the control cylinder diameter d = +D, flow visualization clearly reveals that the 
vortex street is completely suppressed (figure 3). (It is worth emphasizing that the 
velocity fluctuations in the natural vortex street decay exponentially beyond a 
certain initial distance, and that the street survives only for finite distances which 
depends on the Reynolds number (Cimbala, Nagib & Roshko 1988).) Confirmation of 
this suppression is given in figure 4 by hot-wire time traces of the streamwise velocity 
recorded in a wind-tunnel flow under somewhat similar conditions (but the aspect 
ratio was about 60, and d/D was about half as small). All hot-wire measurements 
were made in the shear layer not occupied by the control cylinder. (Both figures 3 and 
4 correspond to the so-called ‘optimal position’ to be described in $6.3 where a more 
general measure of suppression will be provided.) 

When making hot-wire measurements, the control cylinder was carefully adjusted 
to be parallel to the main vortex shedding cylinder and was mounted on a 
micrometer base enabling accurate two-dimensional positioning. The control cylinder 
was tensioned and passed through holes in the end plates or the tunnel walls so that 
all supporting structure was removed from the flow field. Under no circumstances did 
the control cylinder produce it5 own vortex shedding. The control cylinder 
Reynotds number U, d/v was less than 10 in all those cases in which quantitative 
data were obtained, and never more than 25. 

There is a finite spatial domain within which the placement of the. control cylinder 
can suppress the vortex street. Figure 5 shows the regions of vortex suppression for 
four values of the diameter ratio D/d ; clearly the region shrinks with increasing Dld.  
(A discussion of how the boundaries of these regions were defined precisely is best 
relegated to a subsequent section, but it suffices here to say that the boundaries are 
defined sharply enough that almost any definition will yield essentially the same 
results.) When the control cylinder is placed anywhere within these contours the 
vortex street is suppressed as completely as indicated in figures 3 and 4. Furthermore, 
the contours are symmetric about the line y = 0, indicating that a single control 



76 

Y 
D 
- 

0 -  

P. J .  Strykowski and K .  R. Sreenivasan 

X l D  

FIGURE 1. Hydrogen-bubble picture of vortex shedding behind a circular cylinder at Re = 80. 
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FIQURE 2. Schematic of the arrangement for control of vortex shedding; Dld < 20 

cylinder place on either side of the wake can be effective. At Re = 80, the largest 
value of the diameter ratio which was capable of vortex suppression was Dld = 20 
for conditions in figure 5 ;  in this case the region of control shrinks essentially to a 
point. 

We should remark that the control cylinder effects are negligible except when it is 
positioned in the near-wake region (not farther than approximately 3.5 to  4 
diameters downstream of the vortex shedding cylinder). The subtle changes 
produced near the main cylinder in this region can be seen qualitatively by a 
comparison of figure 6 (which is the natural vortex shedding case) with figures 7 and 
8 corresponding to complete suppression ; the Reynolds number in all these figures is 
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FIGURE 3. Hydrogen-bubble picture showing the control of vortex shedding a t  Re = 80 using a 
control cylinder of Dld = 7. 

about 90 and D/d = 7. Note that the control cylinder in each of the figures 7 and 8 
has the effect of diverting part of the fluid into the wake from outside, but the 
detailed conditions (such as the position of the control cylinder) are different between 
the two. 

We have seen that the proper placement of a control cylinder suppresses vortex 
street formation at low Reynolds numbers up to about 80, the precise number 
depending on various conditions (these conditions are discussed in greater detail in 
$3.2) .  Now keeping the control cylinder in position, if the Reynolds number is further 
increased, the vortex street reappears a t  a higher Reynolds number. As we shall 
discuss later, the effect of the control cylinder is not merely to elevate the critical 
Reynolds number to a higher value, because the control cylinder produces a non- 
trivial influence even a t  Reynolds numbers above which complete suppression is 
impossible. These changes are demonstrated qualitatively in the following ex- 
periment. We introduce the control cylinder a t  z / D  = 1.2 but well removed from the 
wake, say y/D > 20, and gradually move it closer to the main shedding cylinder, 
keeping x / D  fixed. The corresponding effects are seen in the series of hydrogen- 
bubble photographs displayed in figure 9 for various control cylinder positions ; the 
Reynolds number is 120 (the vortex street is not suppressed!) and D/d = 7. It is 
difficult to interpret the altered wake structure from these photographs, but some 
details will follow in $56.2 and 6.3. 

One consequence of the suppression of the vortex street is the concentration 
(compare figures 1 and 3) of the bulk of the momentum defect to a narrower region 
than in the natural case, and the corresponding enhancement of the maximum 
momentum defect. Figure 10 shows, at x / D  = 58, mean velocity profiles with and 
without control. Repeated measurements have shown that the modified momentum 
defect behind the cylinder results in a net drag reduction above and beyond the 
increase owing to the presence of the control cylinder. It should be emphasized (see 
figure 10) that the velocity defect in the controlled case occurs close to the cylinder 
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FIGURE 4. Hot-wire oscillations in the wake with and without control a t  Re = 71. (a )  x / l )  = 10 and 
y/D = 1, no control ; ( b )  x / D  = 10 and y/D = 1,  with control, D/d = 1 1  ; ( c )  same as ( b ) ,  except for 
an amplification of about 20; (d )  x / D  = 100, all other conditions remaining the same as in ( c ) .  There 
is typically some small amplification of the disturbances between x / D  of 10 and 100. 

axis, and is accompanied by a weak overshoot (above the free-stream speed) 
occurring over a large width. This latter fact is especially important for a proper 
measurement of drag. (Only half profiles have been plotted in figure 10 to emphasize 
details but full profiles were indeed measured to obtain the drag.) Typically, for 
Re = 80, there is about a 20% reduction in the drag coefficient. Not all positions of 
the control cylinder accompanying the suppression of the vortex street decrease drag, 
and this aspect has been examined in some detail by Ahlborn & Lefrancois (1985). 

3.2. InJluence of secondary parameters on the observed suppression 

The vortex street formation in the natural case depends on a variety of parameters 
such as the aspect ratio of the cylinder, the blockage ratio H I D  (H is the tunnel 
dimension normal to  the flow as well as the cylinder axis), three-dimensionalitics and 
end conditions, and i t  is therefore to be expected that the control will also show some 
dependence on these parameters in addition to  the diameter ratio D/d.  On this last 
effect, we note that the vortex street can be suppressed to higher Reynolds numbers 
by increasing the relative size of the cont,rol cylinder, but we have not pushed this 
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FIGURE 5. Regions of suppression for four values of D/d .  These regions are 

symmetrical about the plane y = 0. Re = 80. 

FIGURE 6. Details in the near field of the vortex shedding cylinder at Re = 90. KO control is 
applied. The extent of the flow field is from x / D  of 0 to 6.6. 

to the limit because as d/D + 1 (from below) i t  becomes increasingly difficult to argue 
that the flow behind a 'single ' cylinder is being investigated. Here we briefly examine 
the influence of the rest of the parameters on the control phenomenon, but note that 
the study is not exhaustive in view of our emphasis on the basic phenomenon which 
does not depend on any of these parameters. 

As described by Nishioka & Sato (1974), Mathis et al. (1984), Strykowski (1986) 
and Sreenivasan, Strykowski & Olinger (1986), the critical Reynolds number for 
natural vortex shedding behind cylinder increases when the ratio L / D  is decreased. 
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FIGURE 7 .  Complete suppression of vortex shedding a t  Re = 90, Dld = 7 .  The control cylinder 
is located a t  x / D  = 1.2 and y I D  = 1. 

FIGURE 8. Complete suppression of vortex shedding at Re = 90, D / d  = 7. The control cylinder 
is located at x / D  = 1.6 and y / D  = 1.2. 

A similar effect has been documented by Shair et al. (1963) for the influence of the 
blockage ratio. In  the present investigation three different facilities with different 
LID and HID were used, and the critical Reynolds numbers were correspondingly 
found to be somewhat different. For example, the natural critical Reynolds number 
in the water channel was about 60 (LID = 15), but it was about 46 in both the wind 
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FIQURE 9. Hydrogen-bubble pictures showing the influence of the control cylinder a t  Re = 120, 
D/d = 7 .  The photographs extend from 8 to 35 cylinder diameters downstream of the main cylinder. 
The inset indicates the corresponding control cylinder positions. 

0 10 20 30 40 

YID 

FIGURE 10. Mean velocity distribution 1 - (U/U,)  at x / D  = 58, D/d = 8.5 and Re = 65. Notice 
the long tail for the case with suppressed shedding. 

tunnels (LID = 60). It thus came as no surprise that vortex suppression was possible 
up to a Reynolds number of about 90 in the water channel, about 80 in the low- 
turbulence wind tunnel facility, and about 70 in the moderate-turbulence-level wind 
tunnel - all for the same diameter ratio D/d  of 10. 

It was determined by Sreenivasan et al. (1986) that the turbulence level affected 
the critical Reynolds number only marginally. We therefore believe that some of 
these differences are due to differences in end conditions and three-dimensionalities. 
For instance, in the low-turbulence tunnel, the test section was circular and the 
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tunnel walls were used as the end plates (consequently the control cylinder passed 
through the tunnel walls), while in the other case, the end walls artificially selected 
a part of a much longer cylinder. 

While the precise details of the suppression phenomenon are sensitive to a variety 
of secondary parameters (such as the position of the control cylinder, aspect ratio of 
the main cylinder, the tunnel height to cylinder diameter ratio, turbulence level, 
etc.), it should be emphasized that the occurrence of the basic phenomenon is quite 
independent of such details (in some moderate range). It is precisely to establish this 
last fact that we undertook a numerical investigation of the two-dimensional wake, 
the results of which (see 54) have confirmed the experimental findings. For most 
experimental work to follow, we chose D/d = 10, LID = 60 and H / D  = 60 as being 
representative of the control of unconfined flow past a two-dimensional Cylinder. 

Some further remarks are appropriate. First, in an experiment with two 
symmetrically arranged control cylinders located at  z / D  = 1.2 and y / D  = L- 1, 
vortex street suppression was achieved up to a Reynolds number of about 100, 
compared to about 80 in the same apparatus for the single control cylinder case. This 
rules out the possibility that the observed suppression is a consequence of the 
asymmetry produced by the single control cylinder. For convenience in experiments, 
however, we have subsequently worked with a single control cylinder. Second, 
similar suppression was observed in the wake of other bluff bodies (see $ 5 ) ,  including 
those with sharp edges facing the flow, thus ruling out the suggestion that possible 
movement of the separation ‘point’ might be responsible for the observed 
phenomenon. This also suggests that the important dynamical effect is associated 
with changes in the wake rather than with changes in the flow on the body itself. 
Finally, as already observed, the control cylinder did not have to produce its own 
vortex street to achieve suppression, thus eliminating the possibility that the 
phenomenon is related to some type of constructive or destructive interference with 
the vortex shedding behind the main cylinder. 

We close this section by emphasizing that the vortex street suppression a t  some 
supercritical Reynolds number can be achieved either by bringing the cylinder into 
an appropriate position after the vortex shedding has started in the normal way, or 
by positioning the control cylinder in that same position prior to setting up the flow. 
In the former case the existing vortex patterns disappear, while in the latter case 
vortex shedding never appears. It is of fundamental interest to note that the final 
effects of both scenarios are the same in all respects measured here. It is this feature 
that will permit us to interpret the experiments from impulsively started flows as 
being relevant to  steady-state vortex street formation. This is also the justification 
for the numerical calculations of impulsively started flows to  be described in the next 
section. 

3.3. Frequency of vortex shedding in the controlled cases 
One way of quantifying the changes occurring in the wake is by monitoring the 
vortex shedding frequency. Figure 11 shows the dimensionless frequency fDz/v with 
and without the influence of the control cylinder. The data were taken in the low- 
turbulence wind tunnel with Dld = 10. For 46 < Re < 80 the vortex street is totally 
suppressed, and there are no pure-frequency oscillations in the flow. For Re > 80 the 
presence of the control cylinder significantly reduces the frequency from its normal 
value. The frequency is reduced by approximately 30% at Re = 80. It may appear 
from here that the primary effect of the control cylinder is to postpone the onset of 
vortex shedding to a higher Reynolds number, but it will be shown later that the 
effect is somewhat more complex. 
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FIGURE 11. Dimensionless shedding frequency from the low-turbulence wind tunnel, with and 
without control. The control cylinder was located x / D  = 1.2 and y/D = 1 ; D/d = 10. 

4. Numerical simulations 
4.1. The motivation 

The smallness of the main cylinder (diameter on the order of 1 mm) necessitated by 
low-Reynolds-number flows in air prevented detailed measurements in the immediate 
neighbourhood of the cylinder ; this limitation is compounded by the sensitivity of 
the near-wake region (closer than say 3.5 to 4 diameters) to insertion of hot-wire 
probes, and seeding problems with laser Doppler measurements make such 
measurements uncertain also. Computations could thus supplement experimental 
results. Secondly, the vorticity field is not obtainable in experiments, while it can be 
computed. As we shall see, this will be helpful for the interpretation of the results to 
be given in $7 .  Thirdly, the use of the full time-dependent numerical solution of the 
Navier-Stokes equations enables an accurate realization of the impulsively started 
flow which, in experiments, can only be simulated approximately over timescales 
smaller than a 100 ms. Finally, it was desirable to have an independent verification 
of the suppression phenomenon which, as discussed in $3, is sensitive in details to 
many secondary features. It was essential to establish that the basic phenomenon 
was not a consequence of some of the secondary features including small three- 
dimensional effects. 

The results presented here are a part of an ongoing investigation of impulsively 
started flow past circular cylinders, the immediate goal being the confirmation of the 
experimental findings. Other details will be reported elsewhere. All computations 
were performed a t  the DPVLR in Gottingen. 

4.2. The numerical scheme 
The numerical technique applied to this problem was the finite-difference Galerkin 
method first developed by Stephens et al. (1984) for approximating the steady 
Navier-Stokes equations in two-dimensions. This technique has been modified here 
to approximate the full time-dependent Navier-Stokes equations through an explicit 
time-stepping scheme. This latter scheme has been implemented by Hannemann 
et al. (1985) for the driven cavity, and Hannemann & Oertel (1989) for the flow 
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FIQURE 12. The computational grid for the numerical simulation. 

behind a flat plate. Here, we provide only a brief description of the method, and refer 
the reader to the above references for details. 

The principal advantage of the finite-difference Galerkin method is the elimination 
of the pressure from the equations of motion by projecting them into a divergence- 
free space. This simplification allows the boundary conditions to be prescribed 
entirely in terms of the velocity field, thus increasing the accuracy. Central 
differencing was used to eliminate artificial dissipation and false damping. For the 
present problem - where we require accurate time-dependent solutions of a flow field 
thought to be absolutely unstable ($$6 and 7)  - the implementation of the simple no- 
slip boundary conditions on the body was essential. Furthermore, the technique has 
the advantage that it captures the wake instability naturally, i.e. the vortex street 
is developed without external forcing, a condition believed to be essential for 
analysing absolutely unstable flows. (In this method, the anti-symmetric numerical 
fluctuations begin to grow exponentially in time after the quasi-steady state is 
reached. Depending on the accuracy with which the equations are solved by the 
conjugate gradient method the exponential growth can be observed for up to eight 
orders of magnitude before the saturation state is reached ; see Hannemann & Oertel 
1989). This feature was lacking in many previous investigations, some exceptions 
being Hirota & Miyakoda (1965), Thoman & Szewczyk (1969), and Hannemann & 
Oertel (1989). Fixed potential flow boundary conditions were applied to all 
boundaries except the outflow where the curvature of the streamwise velocity was 
extrapolated to zero after each time-step; a fixed time-step equal to O.OOlD/U,, was 
used throughout. Careful examination of the vorticity field revealed that the ‘soft ’ 
outflow boundary conditions had an upstream influence on the order of one cylinder 
diameter. 

The cylinder geometry was simulated using a transformation due to Fornberg 
(1980). The computational grid, shown in figure 12, concentrates grid points on the 
leading edge of the cylinder as well as in the wake region where finer resolution is 
required; the grid retains orthogonality in all regions. The present grid was the 
coarsest of those used by Fornberg but, as he pointed out, it has sufficient resolution 
for the Reynolds number of 55 being investigated here. Owing to computing 
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FIGURE 13. Instantaneous streamline pattern indicating the effect of the control cylinder at Re = 
55. The uppermost figure represents the natural case at  the same Reynolds numbers as the rest. The 
remaining figures correspond to increasing values of tU,/D. The control ‘cylinder’ is located as 
indicated in figure 12. 

limitations, a relatively small physical domain (-3.4 < x/D < 9.7) was used; this 
prohibits detailed quantitative comparison of the numerical data with experiment. 

4.3. The principal result 

The natural wake development was computed to the vortex shedding state, after 
which the control ‘ cylinder ’ was introduced. Sometimes, for economy, calculations 
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were started by introducing large-amplitude initial perturbations. The control 
' cylinder ' was simulated by forcing the streamwise and normal velocity components 
to vanish at six grid points located at  x / D  = 1.2 and y / D  = 1.2 occupying an area of 
side equal to  $D. Computations were continued in time up to  the dimensionless time 
tUJD of 150 corresponding to  24 cycles of the vortex shedding oscillations. 
Approximately 20 CPU hours on a CRAY-XMP were required to reach this 
dimensionless time. 

Figure 13 shows a sequence of streamline plots indicating the influence of the 
control 'cylinder' a t  various times during flow development. It is clear that the 
vortex 'street ' is suppressed soon after inserting the control cylinder a t  tU,,/D of 0, 
leading to  the formation of two standing eddies reminiscent of the subcritical state 
in the normal vortex shedding process. Further results will be given as appropriate 
in later sections. 

5. Related experimental studies 
5.1. Experiments behind a flat plate facing the j b w  

One of the important questions to  be settled was whether the vortex street 
supprcssion by this method was peculiar only to the circular cylinder wakes. If it 
turned out that the same type of control can be exercised for flows behind other 
bodies which are different (e.g. with sharp edges facing the flow), the conclusion must 
be that the control becomes effective primarily by working on the wake rather than 
directly on the flow field on the body. For the problem of vortex shedding itself, Koch 
(1985) points out that  i t  is not important which body produces the wake but rather 
the characteristics of the wake velocity profiles where the flow is approximately 
parallel. Triantafyllou & Karniadakis ( 1990) have recently shown that the vortex 
street can be generated numerically without the inclusion of the wake-producing 
body as long as the appropriate mean velocity profiles are incorporated into the 
simulation. 

We chose a flat plate with sharp edges held normal to the flow. We applied the 
same control techniques using a single cylinder in one of the shear layer regions. The 
vortex shedding was suppressed in a similar fashion. For a control cylinder with a 
diameter equal to about a seventh of the flat plate height, suppression was attained 
up to a Reynolds number about 38 YO higher than the normal critical value. Because 
the separation points are fixed a t  the corners, this completely rules out the possibility 
that the suppression of vortex shedding is related to  altering the location of the 
boundary-layer separation. The control cylinder could, however, affect the 
orientation of the layer a t  separation, a detail which requires further study. 

5.2. Heated control elements 
An interesting observation is that heating (in air) the control cylinder with direct 
current dramatically widens the region of suppression. The extent of enlargement of 
the suppression region can be seen by overlapping the contour in the cold control 
cylinder case with that corresponding to the heated control element (figure 14a) at 
about the same Reynolds number. The contour in the heated case corresponds to an 
estimated control cylinder temperature of 400 "C. Figure 14 ( b )  shows that even a t  an 
Re of 120, there is a finite region in the wake where the heated control cylinder can 
produce vortex suppression. Even though the control contours are quite different 
from case to case, the most striking feature is that their downstream extent was 
never greater than about 4 diameters. 
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FIGTJRE 14. Hatched region represents the domain of vortex suppression using a control cylinder 
heated to about 400 "C with direct current. (a) Re = 80; ( 6 )  Re = 120. D/d = 15 in both cases. The 
cross-hatched region in (a) corresponds to the suppression domain with an unheated cylinder of the 
same dimensions. 

6. Further measurements related to the physical explanation of the 
phenomenon 

6.1. Possible connection between vortex shedding and absolute instability 
Strykowski (1986) and Sreenivasan et al. (1986) argued that vortex shedding 
corresponds to the growth and saturation of disturbances which remain stationary 
with respect to the cylinder. Such flows have been called absolutely unstable, self- 
exciting or globally unstable (e.g. Koch 1985; Huerre & Monkewitz 1985; Bechart 
1985; Triantafyllou et al. 1986; Monkewitz & Sohn 1986; Monkewitz & Nguyen 1987; 
Hannemann & Oertel 1989). Many of the measurements to  follow are motivated to 
some extent by the view that absolute instability may have some bearing on the 
natural vortex shedding process. The following observations are relevant to  this 
claim : 

(a)  The vortex shedding is dominated by a pure-frequency instability; the 
velocity spectral peaks are extremely sharp, and stand out  about six to eight orders 
of magnitude above the background (Sreenivasan 1985). This is in contrast to the 
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instabilities in constant-density cold jets, boundary layers, etc., where similarly 
obtained spectral distributions possess a broad range of frequencies around the 
dominant peak, which itself is only an order of magnitude or so above the 
background noise. These instabilities are known to be of the convective type (Huerre 
& Monkewitz 1985), where perturbations travel as they are amplified. The main point 
is that travelling perturbations in spatially inhomogeneous flows cannot produce the 
pure-frequency phenomenon seen in wakes and variable-density jets (Sreenivasan, 
Raghu & Kyle 1989). 

(b )  The vortex shedding critical Reynolds number, as well as the saturation 
amplitude of the disturbance, are insensitive to the background noise or external 
forcing. This is in contrast to the instabilities in the other flows mentioned above, 
where the saturation amplitude of the disturbance is linearly proportional to its 
initial amplitude. This was shown by Sreenivasan et al. (1986). 

(c) As shown by Strykowski (1986) and Sreenivasan et al. (1986), disturbances in 
the supercritical Reynolds number regime (that is, past the onset of vortex shedding) 
grow temporally, and at  the same exponential growth rate everywhere in the flow ; 
also see discussion below. 

( d )  The flow dynamics in the supercritical stage can be reasonably well described 
by the Landau-Stuart equation whose important constants are independent of 
space. For more precise and detailed discussion, see Strykowski (1986), Sreenivasan 
et al. (1986) and the independent work by Mathis et al. (1984) and Provansal, Mathis 
& Boyer (1987). The only way it appears necessary to incorporate the spatial 
dependence is via the spatial dependence of one of two of the complex constants 
whose ratio, however, remains independent of space. 

These features support the notion that the mechanism leading to vortex shedding 
is governed by absolute instability. We hesitate to be more definitive simply because 
of the fact that the concepts are valid strictly for spatially homogeneous systems 
perturbed by an impulse-type response. In  wakes behind objects we do not meet 
these criteria even loosely because the wavelength of the unstable perturbation is 
comparable to the region of inhomogeneity. A different way of describing the 
dynamical process leading to vortex shedding is via the temporal growth of a two- 
dimensional eigenfunction. Jackson (1987) has calculated the stability of such 
perturbations in the wake of a cylinder and found that the spatial eigenfunction of 
the disturbance was first amplified temporally a t  the Reynolds number usually 
measured to be the vortex shedding Reynolds number. A similar two-dimensional 
analysis of the cylinder wake was undertaken also by Zabib (1987) and by 
Hannemann & Oertel (1989) for the wake formed downstream of a flat plate. 

If the vortex shedding process is due to temporal growth of a two-dimensional 
eigenfunction as Jackson visualizes, or is related to absolute instability, it is natural 
to ask whether the suppression of vortex shedding is associated with the damping of 
the appropriate temporal modes. To investigate the amplification or suppression of 
temporal modes it is necessary to design a transient experiment to directly measure 
the temporal growth or decay rate of the wake oscillations. We have performed such 
experiments in the presence of the control cylinder and have determined t.he extent 
to which temporal modes are damped (see $6.3). However, to gain a proper 
perspective of these measurements, it  is necessary to outline the temporal 
amplification and decay rate measurements in the natural wake. This is done below. 
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6.2. Temporal modes and the formation of vortex shedding 
Let us first concentrate on the growth rates of disturbances in the wake at  some 
supercritical Reynolds number. The experiments needed to determine these growth 
rates must consist of abruptly setting the flow a t  the desired Reynolds number, and 
observing how the oscillations grow in time. If the disturbance (at any given 
position) amplifies exponentially as one expects to be the case initially, one can 
obtain the growth rate a, from 

(6.1) u - exp(rtt), rt = a,+ia,. 

The globe valve mentioned in $2.1.2 was opened suddenly, and the streamwise 
velocity signal at  the chosen location within the wake was digitally recorded either 
by the hot wire or LDV. Linearization of hot-wire signals was done in some cases, but 
since this did not produce significant differences, many experiments were done 
without linearizing. To obviate unnecessary changes in the mass flow rate, and to 
improve the effective time constant for the rise time of the mean velocity, the flow 
rate was increased from a value slightly below Recr (where only background 
fluctuations were present) to the desired supercritical Reynolds number at  which the 
oscillations selected by the flow begin to grow from the background. 

A typical mean velocity change as well as an oscillogram of velocity fluctuations 
are given in figure 15. The accompanying flow Reynolds-number variation in the top 
trace is from 43 to 49, occurring on a timescale of the order of 200 ms. The bottom 
trace (b )  shows the manner in which the oscillations in the streamwise velocity, 
measured at  x / D  = I 0  and y / D  = 1, grow with time. The signal in figure 15(a) was 
low-pass filtered below 30 Hz so as to reflect only the mean velocity variations, while 
the trace in figure 15(b) was high-pass filtered above 30 Hz to remove the mean 
velocity variation. The vortex shedding frequency was about 48 Hz, so that this 
high-pass filtering did not introduce too many phase or frequency modifications in 
the oscillations. The oscillations commence only after the Reynolds number attains 
the supercritical value; hence, it is clear that the characteristics of the oscillations 
correspond unambiguously to this supercritical state. This behaviour was observed 
even at  those supercritical Reynolds numbers for which the characteristic growth 
time of the oscillations was comparable with or smaller than the rise time of the mean 
velocity. Presumably, oscillations do not amplify at  the intermediate supercritical 
states because the instability associated with such transient states does not have time 
to develop. 

The amplitude of the envelope in figure 15(b) can now be processed to obtain the 
growth rate a, in (6.1) at the Reynolds number corresponding to the upper plateau 
in figure 15 (a).  LDV measurements made at  5 diameters downstream of the cylinder 
show exactly the same features. All growth rate measurements were made in the 
shear-layer region of the wake (that is, the region in which only one frequency is 
apparent in the hot-wire or LDV signal). Measurements at  different streamwise 
positions did not show differences in growth rates. 

While the measurement of growth rates is relatively straightforward, the same 
cannot be said of decay rates. In determining growth rates, we set the flow instantly 
(in principle) to the required supercritical Reynolds number starting from some 
subcritical state. Since the latter does not possess any preferentially periodic 
oscillations, the flow is free to choose the frequency and amplitudes appropriate to 
the supercritical Reynolds number. In contrast, decay measurements require the 
examination of the wake response in the subcritical state, where periodic oscillations 
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FIQIJRE 15. Simultaneous records of the mean and fluctuating velocities. The flow Reynolds 
number was increased from 43 to 49 (the critical Reynolds number, Rec,, being 46 in this instance). 
Trace (a)  was low-pass filtered below 30 Hz, and trace ( b )  was high-pass filtered above 30 Hz. 

can be established only by means of some external forcing. The correct procedure 
would therefore be to establish (by some external means) flow oscillations at  the right 
frequency appropriate to the desired subcritical Reynolds number, and switch off the 
forcing to quantify the ensuing decay of the oscillations. One does not know a priori 
what this right forcing frequency should be (or, for that matter, whether such a 
frequency exists), and how the decay rates depend on this frequency. We have 
addressed these issues at  some length and will report them in detail in a forthcoming 
paper (preliminary results appeared in Sreenivasan et al. 1986), but note for present 
purposes that the decay rates are essentially invariant with the precise excitation 
frequency or the method in which the forcing was accomplished. The primary point 
is that the decay rates of wake oscillations were observed to be exponential in all 
cases (see figure 16 for an example), and the coefficient a, in equation (6.1) was 
obtained as for the growth case -the difference, of course, being that a, is negative 
during decay. 

The measured growth and decay rates taken in the cylinder wake without the 
presence of a control cylinder are collected in figure 17. (The reason for normalizing 
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FIGURE 16. Mean and fluctuating velocity response, measured during decay. The flow Reynolds 
number is reduced from 50 to 44. The signal was recorded from a hot wire located st x/D = 10 and 
y / D  = 1; Rec, = 46. 
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FIGURE 17. Amplification and decay rate measurements taken for a variety of conditions and by 
different experimental methods briefly described in the text. For details, see Sreenivasan et a2. 
(1986). Cylinder aspect ratio = 60. The critical Reynolds number corresponding to zero growth 
rates is 46. The inset shows growth rate measurements made at  different streamwise positions in 
the wake shear layer a t  Re = 60. 

the growth and decay rate data in figure 17 by the viscous time scale D2/v  instead 
of the convective time scale D/Uo is simply that a, D2/u is usually of the order unity 
while a,D/Uo, which is smaller by the factor of the Reynolds number, gives 
numerical values on the order of 0.01.) Only one set of growth rate data has been 

4 FLM 219 
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FIQURE 18. Amplification and decay rates measured in the wake for various control cylinder 
positions at Re = 79, 63 and 46.5. The control cylinder is traversed along the plane x / D  = 1.2; 
D/d = 10. The arrows indicate the asymptotic values of a, occurring when the control cylinder is 
completely removed. 

plotted, but other sets obtained at  different z / D  (by LDV as well as hot wires) were 
no different (see inset to figure 17), except that the measurement uncertainty was 
greater at larger downstream distances, both because of the smaller amplitudes and 
somewhat higher three-dimensional effects there. 

Oscillations grow rather slowly in the very close positive vicinity of Recr; it is 
exciting to watch sustained oscillations appear just above Re,,, say Rec,+O.l. The 
growth rates there are so small that saturation amplitudes are reached only for long 
times of the order of a minute corresponding to about lo4 convective timescales 
DIU,. Many flow facilities do not have test sections that are lo4 cylinder diameters 
long, and it is therefore clear that the appearance of sustained pure-frequency 
oscillations at  these Reynolds numbers cannot be related to any spatial development 
in the flow. In a few cases, we observed the growth phase extending for over one 
minute followed by an immediate decay over a comparable period of time, 
apparently because the Reynolds number had inadvertently fallen from just above 
to just below Recr. 

6.3. Control by suppressing temporal modes 
From the above discussion it appears logical to expect that vortex shedding will be 
suppressed if the exponentially growing temporal disturbances are damped. To 
examine this picture, we have measured, as described above, the temporal growth 
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FIGURE 19. Magnitude of r.m.s. velocity fluctuations measured in the shear layer a t  x / D  = 8, for 
various control cylinder positions. The control cylinder is traversed along the plane x/D = 1.2; 
D / d  = 10. 

and decay rates in the presence of the control cylinder. For a fixed streamwise 
position, x /D = 1.2, the control cylinder is traversed in the normal direction, all the 
way from very far (effectively corresponding to the control cylinder out of the flow 
domain) to the cylinder axis. 

Measured values of a, are given in figure 18 for Re = 79, 63 and 46.5 (that is, just 
above the critical Reynolds number in the natural case) as a function of the control 
cylinder position y/D. At Re = 79, the control cylinder reduces a,D2/u from 6.7 to as 
low as 2.5, but the sign is not changed. In contrast, at Re = 63, the temporal 
instability is suppressed (i.e. a, < 0) for control cylinder positions 0.7 < y / D  < 1.1. 

The importance of this observation can be seen in figure 19, where the root-mean- 
square (r.m.8.) magnitude of the streamwise velocity fluctuations (in the asymptotic 
state) is plotted against the control cylinder position as before. The r.m.s. 
measurements were made by a hot wire fixed at  x / D  = 8 and y/D = 1, but their 
behaviour elsewhere is qualitatively the same. At Re = 63, the effectiveness of 
suppression is strikingly clear, precisely when the control cylinder is in the region 
a, < 0. Visual observations confirm that the vortex street disappears for these 
conditions. This supports the view that the suppression of vortex shedding is related 
to the damping of some temporal instability in the frame of reference of the cylinder. 
At Re = 79, reduced growth rates result in reduced r.m.s. intensity but the control 
cylinder does not suppress the oscillations completely. Strykowski & Sreenivasan 

4-2 
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FIGURE 20. Contours where a, = 0 for several Reynolds numbers. Data are symmetric 
about the line y = 0; D / d  = 10. 

(1985b) report that the effect of the control cylinder in both cases pervades for 
streamwise distances of the order of 100 diameters. 

The r.m.s. velocity pattern shown in figure 19 is generally consistent with the 
growth rate data of figure 18 and a related observation made by Strykowski (1986) 
and Sreenivasan et al. (1986) that smaller saturation amplitudes must accompany 
smaller growth rates. The exception is in the neighbourhood of a, = 0, where the 
amplitude rises sharply, as seen in figure 19. This repeatable phenomenon has no 
satisfactory explanation. Flow visualization in a water channel shows that complex 
spatial changes accompany such transitions, and the jump in the single-point r.m.s. 
measurements offer no help in understanding them. 

The features observed in figure 18 at Re = 79 and 63 occur also at Re = 46.5 
(remembering that Recr = 46 in this apparatus) ; vortex street formation is suppressed 
except when the control cylinder is located in the region 0.25 < y/D < 0.5, and 
y/D > 2.8. Oscillations do appear for these two cases, but the saturation amplitude is 
small, and is not reached until several seconds after the flow is set up because a, is 
very small. We define from figure 18 an ‘optimum ’ position for the control cylinder 
corresponding to the most negative growth rate; this occurs at  approximately a 
y/D = 0.95. 

An instructive representation of the influence of the control cylinder is to present 
the locus of all points in the (z,y)-plane corresponding to a,. = 0 for different Reynolds 
numbers (figure 20) ; as anticipated in $3, the boundaries in figure 20 correspond quite 
well to those of figure 5 .  As the Reynolds number is increased, one reaches a value 
at which the contour shrinks to a point. A t  this point, the control cylinder position 
becomes very critical, and suppression at higher Reynolds number is not possible. 

An interesting point is that, at the Reynolds number of 48, there is a finite region 
on and around the wake centreline within which the control cylinder can suppress 
shedding. At a Reynolds number just above the critical value of 46 (nominally 46.2), 
the suppression region becomes contiguous and wide, consistent with the growth rate 
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data of figure 18. Notice that the shape and extent of the suppression region is similar 
to that at the higher Reynolds numbers in the case of a heated control cylinder (see 
contours for Re = 80 in figure 14a). However, we did not observe a contour similar 
to figure 14 ( b )  with an unheated control cylinder, indicating that comparisons 
between the two phenomenon must be made with some discretion. There is little 
doubt that the heated wake problem is rich in detail and deserving of further study; 
such an effort is in fact currently under way. 

In the above experiments, we have varied the control cylinder position keeping the 
flow Reynolds number fixed. Alternatively, one can keep the position of the control 
cylinder fixed, and vary the Reynolds number starting from the steady state. (It is 
important to vary the flow speed slowly, just as it is important to vary the control 
cylinder position slowly, to avoid hysteresis effects.) The interesting point is that the 
two methods yield identical results, and more on this will be said in 57. 

Figure 20 suggests that the critical Reynolds number in the presence of the control 
cylinder is never smaller than the natural value. That is, there is never a situation 
when the control cylinder (D/d = 10) induces instability in otherwise stable 
circumstances. This was checked carefully by fixing the flow Reynolds number at  46 
and moving the control cylinder throughout the flow domain. Owing to geometric 
constraints in the wind-tunnel apparatus, the control cylinder could not be moved 
upstream of the plane x / D  = -0.5. 

By positioning the control cylinder at  the limiting 'optimum' location of figure 18 
( x /D  = 1.2, y / D  = 0.95), we have measured the temporal amplification and decay 
rates aa 8 function of Reynolds number. The data are given in figure 21, which also 
shows that the growth and decay rates fall on a continuous line. As in the natural 
vortex shedding case, these were independent of the position of measurement. The 
comparison of the growth and decay rates with and without control shows that the 
influence of the control cylinder is to shift the curve by an approximately constant 
amount, very reminiscent of the frequency data of figure 11. The critical Reynolds 
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FIQURE 22. Root-mean-square streamwise velocity fluctuation with and without control, Re = 78. 
The control cylinder is located at x / D  = 1.2 and y / D  = 0.9; D / d  = 10. The hot wire is traversed 
along the plane y/D = 0.7. 

number, corresponding to a, = 0, is about 70 in this flow apparatus; below Re of 70 
the temporal instability and vortex street are simultaneously suppressed. 

We envision that disturbances which ‘stay put’ (that is, have zero group velocity) 
as they grow in time eventually lead to vortex shedding. The phenomenon can be 
modelled as a ‘self-excited oscillator’ (see Olinger & Sreenivasan 1988a, b ; Monkewitz 
1988) which dominates the flow development. It is likely that the convectively 
growing instabilities of the type studied by Nishioka & Sat0 (1978) may exist 
underneath the basic structure of the temporally growing disturbances. These are 
normally masked by the overwhelmingly large temporal instabilities. By introducing 
the control cylinder and ‘turning off’ the temporally growing perturbations, the only 
possible instabilities now are of the convective type which convect downstream as 
they amplify, and therefore do not remain long enough in the vicinity of the cylinder 
to cause vortex shedding. 

To examine this view further, we have presented in figure 22 the streamwise 
development of the r.m.8. velocity with and without control. In the natural wake, 
large saturation amplitudes peak with a distance of x /D  < 3.5, and decay thereafter. 
The implication is that the wake environment beyond about x /D of 3.5 is stabilizing 
for these perturbations. These data are in reasonable agreement with those of 
Nishioka & Sat0 (1978). In contrast, the amplitude in the controlled case is two 
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FIGURE 23. Power spectral densities of the streamwise velocity fluctuation at several different 
Reynolds numbers with the control cylinder located a t  x / D  = 1.2 and y/D = 0.95; D/d = 10. 

orders of magnitude lower in the near-wake region. The amplitude increases spatially 
downstream, reaching a peak around an x /D  of 40, after which it decays (not 
plotted). As we shall see in the next section, the spectral composition of these latter 
fluctuations is broadband, this being a property of convectively unstable dis- 
turbances. 

6.4. Power spectral measurements 
The measurements presented are for the double-contraction wind tunnel with low- 
turbulence level in which suppression was possible up to a Reynolds number of about 
80 (as against 70 in the single-contraction wind tunnel), for D / d  = 10. 

The power spectra in figure 23 outline the changes occurring as the Reynolds 
number is reduced from above to below 80. The control cylinder was located at  the 
‘optimum’ position, and the power spectra were recorded by a hot wire located at 
x/D = 50 and y / D  = 1. For Re = 82, the wake is dominated by a pure frequency of 
high quality, several orders of magnitude above the noise level. (Closer to the 
cylinder, the spectral peak is even sharper and larger in magnitude, but we have 
chosen to measure far enough downstream to avoid possible asymmetry effects.) The 
spectral peak becomes considerably broader at  Re = 78 with the maximum power 
level being reduced by over two orders of magnitude. The power spectra in figure 23 
at Re = 82 and 78 would correspond roughly to the flows of figures 1 and 3 
respectively. (The flow visualization in figure 3 is consistent with small downstream 
growth of disturbances which, however, do not seem capable of organizing themselves 
into periodic structures with sharp spectral peaks.) As described in $56.3 and 7 the 
control cylinder eliminates the growth of the temporal mode (eliminating the 
associated large saturation amplitudes) but has relatively little influence on the 
small-amplitude spatially unstable disturbances (instabilities having positive group 
velocities). 

The erosion of the peak as we decrease the Reynolds number appears continuous, 
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FIGURE 24. The quality Q = f,,/Af of the peak frequency in the power spectra from figure 23. A t  
is measured at a power level two orders of magnitude below the peak value. 

but the relative changes are not gradual. The abruptness of this transition can be 
quantified by measuring the quality Q = fo/Af of the spectral peak, where f, is the 
frequency of the largest peak, and Af is defined for present purposes as the frequency 
band measured a t  a power level two orders of magnitude below fo. (Note that the 
usual choice of Af corresponding to the $-peak power level would bc uninformative 
here, besides resulting in a large scatter owing to the small values of Af.) The 
quality is reduced by approximately two orders of magnitude (figure 24) in the 
narrow range of Reynolds numbers just bordering the ‘critical ’ value. (Another 
quantity that shows a sudden qualitative change across the suppression contour is 
the dimension of the attractor in phase space. A detailed discussion of this matter 
would take too much space and is not central to  the issue being discussed, but it is 
thought that the main result may be of interest to  some readers. The so-called 
correlation dimension, evaluated according to an algorithm due to Grassberger & 
Procaccia (1983), was unity outside the suppression region, while it was un- 
measurably high inside of them. This is consistent with the notion (Sreenivasan 1986) 
that the concept of the dimension of the attractor is not very useful in convectively 
unstable flows.) 

One can also do the complementary experiment of keeping the Reynolds number 
fixed, and varying the control cylinder position. In  figure 18, i t  was found that the 
temporal amplification rate became negative for a range of cylinder positions (0.7 < 
y/D < 1.1) at Re = 63. Figures 25(a-g) outlines the spectral changes for control 
cylinder positions varied across this region for a slightly different Reynolds number 
of 65; the inset roughly shows the various control cylinder positions with respect to 
the boundary between positive and negative growth rates. When the control cylinder 
is placed such that a, > 0, spectral peaks are sharp (figures 25a and 25g) ,  whereas in 
the immediate vicinity of a, < 0 (figures 25b and 25f) ,  the peak is much less 
dominant. In the centre of the contour corresponding to  the ‘optimum’ control 
position (see inset), the growth rates are most negative and the power spectrum is 
most broad. An additional feature seen in figure 25, and to a lesser extent also in 
figure 23, is that the amplified disturbances are skewed to higher frequencies when 
the growth rate first become negative, and become symmetric only when it is reduced 
further. Strykowski (1986) has given an argument to show that this behaviour is 
consistent wit,h expectations that a convectively unstable flow has set in. 
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FIGURE 25. Power spectra of the streamwise velocity fluctuation a t  Re = 65 for various cylinder 
positions shown in the inset. The control cylinder was located on the plane x JD = 1.2; D Jd = 10. 

7. Discussion and conclusions 
As mentioned earlier, the ‘control’ phenomenon is most likely to  be related to 

changes occurring in the neighbourhood of the vortex shedding cylinder. It is our 
premise that the understanding of this ‘control’ will lead to an improved 
understanding of the vortex shedding itself. Here, we try to connect the various 
observations in a unified way. It is useful first to recapitulate the special features of 
this phenomenon, because i t  is in these features that the key to the explanation must 
lie. 

7.1. Special features of the present suppression method 
The first point is that, while some detailed aspects of the suppression phenomenon 
might be sensitive to  three-dimensionalities, specific end conditions, free-stream 
turbulence level, etc., the essentials of the phenomenon are independent of them (as 
long as they are moderate). Strong evidence for the latter part of this statement 
comes from numerical calculations for an ideal two-dimensional case which showed 
features completely consistent with experiments in nominally two-dimensional flows. 
It is also clear that the control is possible only when the near field is manipulated in 
some way; recall that the control cylinder was not effective when placed downstream 
of x/D of 4. We infer that the vortex shedding phenomenon must be associated with 
the near field dynamics. It is also clear that the effect is not one of setting up an 
asymmetry, because two control cylinders are more effective than a single one. 
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Suppression by this technique is possible behind a variety of objects, and therefore 
the control cylinder effect is not one of altering the flow field on the body, such as 
moving the separation ‘point’. This suggests that the vortex shedding itself is a 
process independent of the body, and is likely to be the property of its wake. Since 
we have already excluded unsteady effects as being unimportant for control, we infer 
also that the property of the mean velocity distribution in the wake is the most 
significant aspect determining the vortex shedding. The related numerical study of 
Triantafyllou & Karniadakis (1989) appears to confirm this conclusion. The problem 
of vortex shedding thus properly belongs to the realm of instability analysis. 

Another important observation is that the suppression is not a dynamic effect 
resulting from some type of interaction between the unsteady flow field of the vortex 
shedding and the control cylinder. A point in favour of this view is that suppression 
at a given low Reynolds number above the critical value is achieved equally well 
either by bringing the cylinder into an appropriate position after the vortex shedding 
has started in the normal way, or by positioning the cylinder in that same position 
prior to setting up the flow. In the former case the existing vortex patterns 
disappear, while in the latter case vortex shedding is banished from appearing. It is 
of fundamental interest to note that the final effects of both scenarios are the same. 
It is in fact this feature that allowed us to interpret the experiments from impulsively 
started flows as being relevant to steady-state vortex street formation. 

An intriguing property of the vortex shedding is that the spectral density of the 
velocity fluctuations in the wake possess high-quality peaks (Sreenivasan 1985 ; 
Sreenivasan et ul. 1989), quite different in character from those of many other 
unstable flows. This pure-frequency oscillation has led to expectations that the 
instability is ‘global’ in nature or equivalently one in which the flow as a whole 
participates. Another related view is that the nature of instability is of the absolute 

7.2. Physical interpretation of the mechanism of vortex street suppression 
type. 

It is useful to recapitulate first the essential physics of vortex shedding itself. At  low 
Reynolds numbers, the vorticity pumped into the wake from the boundary layers on 
the cylinder can be diffused away from the shear layer surfaces merely by viscous 
action. The classical view is that, as the flow Reynolds number increases, viscous 
diffusion alone cannot keep up with the increased vorticity production in the 
upstream boundary layers, and vortices break away at regular intervals, constituting 
‘vortex shedding. ’ 

Let us briefly review the importance of the vorticity distribution and circulation 
in the wake shear layer to the formation of the natural ‘vortex street. ’ As pointed 
out by Abernathy & Kronauer (1961) it is not necessary to have a wake-producing 
body to form a ‘vortex-street.’ The body is necessary to generate the shear layers, 
of course, but the main point is that it  is the interaction of the shear layers, 
independent of the body, which forms the ‘vortex-street. ’ A direct consequence is 
that it is not the reduction in base pressure which forms the ‘vortex-street ’ but the 
formation of the ‘vortex street’ through shear layer interaction which results in a 
decrease in the base pressure. Further, by modelling the wake shear layers as vortex 
sheets -which is justified if the disturbance wavelength is large compared with the 
shear-layer thickness, as was found by Fage & Johansen (1927) - Abernathy & 
Kronauer found that the ‘vortex street’ formation was then only a function of the 
magnitude of the circulation in the shear layer and the shear layer spacing. (We 
temper this conclusion somewhat by noting that the existence of a growing 
antisymmetric perturbation for two parallel shear layers need not imply a nonlinear, 
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FIQURE 26. Velocity signals recorded at several locations in the flow field showing the suppression 
of vortex shedding at Re = 55. The control body is introduced at x / D  = 1.2, y/D = 1.2 (see 
figure 12) at tU,/D = 0. 

single frequency entity, and it remains to be shown that the latter does not require 
the body. ) 

These results are qualitatively supported by Gerrard (1966) who described the 
‘vortex street’ formation to be a function of the ‘diffusion length’ and ‘formation 
length. ’ Gerrard’s model predicts that the circulation in the shear layer must be of 
a sufficient magnitude before one shear layer draws the other across the wake centre 
plane. Further, this interaction must take place before a critical distance (formation 
length) is reached. In Gerrard’s terminology the ‘vortex street ’ could be inhibited if 
either the shear layer vorticity distribution was diffused (over a critical diffusion 
length) or the shear layers were prevented from interaction (over a critical formation 
length), the essential point being that the spreading of the shear layer means that 
only a part of it is drawn across to the other side, 

We now recall some observations made in the control case. First, we showed in 
figures 6, 7 and 8 that a small amount of fluid is apparently diverted into the near- 
wake region from the free stream, although to widely varying extents depending on 
the precise position of the control cylinder. Although no quantitative information 
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FIGURE 27. Mean vorticity contours at Re = 55 for the flow ( a )  without the control cylinder 
(quasi-steady solution) and ( b )  with the control cylinder (tU,,/D = 150). 

was obtained in numerical investigations ($4) (computations were restricted to 
obtaining some basic quantities mainly because of the expense), the results were 
qualitatively consistent with this conclusion. For instance, the velocity-time trace to 
the lower left of figure 26 shows a substantial increase in the region behind the main 
cylinder whereas a sizeable velocity reduction occurs directly downstream of the 
control cylinder (upper right trace). 

One must expect fluid diversion and the vorticity redistribution to  be related. The 
numerically generated vorticity fields with and without the presence of the control 
cylinder (figure 27) show that the properly placed control 'body ' redistributes 
vorticity in the shear layer in which it resides, but has remarkably little direct 
influence in the opposite shear layer. The vorticity field during control was taken at  
tU,/D = 150 of figure 13 ; for the natural wake, it was taken from the ' quasi-steady ' 
basic state. (The 'quasi-steady' state is the instantaneous flow field which exists 
immediately prior to the exponential growth of the pure-frequency disturbance 
leading to vortex shedding; e.g. Hannemann & Oertel (1989). For subcritical 
Reynolds numbers, the ' quasi-steady ' solution is the same as the steady solution of 
the NavierStokes equations. In this analysis, the steady and quasi-steady solutions 
are quite similar, because the Reynolds number is only slightly above the critical, 
allowing us to compare the controlled wake with the ' quasi-steady ' solution, thus 
eliminating the need to compute the steady solution separately.) 

The control contours always lie outside the locus of maximum vorticity present in 
the steady wake. To see this, lines of constant vorticity from Dennis & Chang (1970) 
for a steady flow past a circular cylinder a t  Re = 70 are plotted in figure 28, with the 
dashed line representing the locus of maximum vorticity a t  each streamwise position. 
A typical suppression boundary from figure 20 is superimposed. It is clear that the 
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FIGURE 28. Mean vorticity lines plotted with the contour a, = 0 a t  Re = 70. The mean vorticity 
data are for steady flow a t  Re = 70 from Dennis & Chang (1970). 

lower edge of the boundary lies everywhere above the line of maximum vorticity. 
This conclusion also follows from Dennis & Chang’s data at lower Reynolds numbers. 

Under these circumstances, a partial cancellation of the vorticity results in the 
portion of the shear layer closest to  the wake centreline. Correspondingly an 
enhancement of the vorticity must occur farther off-axis; both of these effects can be 
observed in figure 2 7 ( b ) .  To quantify roughly the extent of vorticity diffusion, the 
circulation in the upper and lower shear layers from figure 2 7 ( b )  was computed on 
either side of the wake centreline over a domain from 0.5 < z / D  < 4 and Iy/Dl < 1. 
The magnitude of the circulation in the upper shear layer (containing the control 
body) was reduced by over 50% in comparison to that for the lower shear layer. 
When the domain of integration was extended to larger Iy/Dl the additional 
circulation on the high-speed side of the control cylinder began to  balance that 
depleted from the low-speed side. Together, this simply confirms that the upper layer 
has been effectively diffused. 

By the same arguments a control cylinder placement may exist which leads to the 
enhancement of the circulation of the main shear layer resulting in a destabilization 
of the wake. But we have not seen that to happen even after a detailed search. We 
can in general reduce a shear by either decreasing the velocity in the high-speed 
stream or increasing the velocity in the low-speed stream. It appears that a properly 
placed control cylinder may satisfy both these criteria by a combination of its 
velocity defect and its ability to redirect the oncoming flow. Apparently this unique 
combination is not satisfied in the immediate neighbourhood of the main cylinder, a 
detail which requires further study. 

We may thus conclude that the properly placed control cylinder weakens the shear 
layer by spreading the velocity gradient over a larger distance; i.e. diffusing 
vorticity. When the control cylinder is placed farther outside but near to the locus 
of maximum vorticity, the wake of the control cylinder is most effective in reducing 
the circulation in that portion of the shear layer which is most critical for vortex 
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formation. Using the formation-length terminology of Gerrard, a properly placed 
control cylinder increases the diffusion length, or equivalently, thickens the shear 
layer. If the circulation is reduced below some threshold level in the formation 
region, the mutual attraction between the opposing shear layers will be too weak to 
form the vortex roll-up. Gerrard’s model was originally applied only to Reynolds 
numbers greater than about 90. Although a control cylinder of dimensions d = +,$I 
was unable to suppress vortex shedding for Re > 90, larger control cylinders were 
capable of vortex suppression up to Reynolds numbers on the order of 150 or more 
(D. J. Olinger 1986, private communication) ; the phenomenon a t  these higher 
Reynolds numbers is qualitatively similar in all respects to the above discussions. 
Furthermore the data in figures 11 and 21 indicate no conspicuous behaviour in the 
neighbourhood of Re = 90 which would suggest that the control mechanism has 
changed significantly. In  fact we believe that these results provide some evidence 
that Gerrard’s model is applicable also in the lower Reynolds-number range. 

An interesting prediction made by Gerrard was that as the shear layers were 
weakened, but before the ‘vortex street ’ was eliminated the shedding frequency 
would be reduced because the weaker shear layers could not as rapidly ‘pull’ each 
other across the wake. Consistent with this model, we observe that the weakened 
shear layers result in a reduced shedding frequency (see figure 11)  even when the 
‘vortex street ’ is not eliminated. 

7.3. Absolute and convective instabilities 
Although the concepts of absolute and convective instability are strictly valid for 
describing the space-time evolution of a generic linear disturbance on an infinitely 
parallel flow, they provide a useful framework for explaining the influence of the 
control cylinder, and of the vortex shedding mechanism itself. Tentative connections 
have been indicated by these and other recent experimental studies (see Mathis et al. 
1984; Strykowski 1986; Provansal et al. 1987 and Sreenivasan et aE. 1987, as well as 
numerical studies of Koch 1985; Triantafyllou et al. 1986; Monkewitz & Nguyen 
1987; Hannemann & Oertel 1989 and Triantafyllou & Karniadakis 1990) but the 
connection still requires careful consideration. It is not entirely clear why the 
analysis based on these approximations should be relevant to wake flows, but 
calculations based on these or related ideas yield sensible results (e.g. Koch 1985, and 
other references cited above). Perhaps the most appropriate way of viewing the 
problem is through the temporal instability of two-dimensional disturbance 
eigenfunctions (Jackson 1987 ; Zabib 1987). 

It was found that the natural and controlled wakes are qualitatively similar, and 
a feature of this study is the use of the control cylinder as an additional parameter 
for studying the details of the problem. One of the major conclusions of this work is 
that the suppression of the vortex street corresponds to the global decay of modes 
that would, under normal circumstances, be temporally amplified. Since none of the 
control devices worked when placed downstream of x / D  around 4 - recall the results 
of Roshko (1955) on the use of splitter plates which were ineffective in suppressing 
shedding when placed downstream of approximately x/D = 3 - temporally unstable 
eigenmodes must be very heavily weighted by the near field. Preliminary numerical 
calculations of Hannemann (1987) provide qualitative indication of the extent to 
which the eigenmode weighting occurs in the near field of bluff bodies. By 
introducing a small-amplitude impulse perturbation a t  several locations behind a flat 
plate in the quasi-steady state, a region of temporal receptivity was found. A t  the 
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Reynolds number of 200, this region extended downstream to approximately 4 
trailing-edge thicknesses of the plate and half that distance normal to the flow. 
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